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Specific Heat Measurements by a Thermal Relaxation
Method: Influence of Convection and Conduction1

H. Valiente,2 O. Delgado-Vasallo,3 R. Abdelarrague,4 A. Calderón,4,5

and E. Marin4,6

This paper involves the well-known thermal relaxation method for measurement
of the specific heat (c) of thin solid samples. Although this method was
applied successfully in recent years for the characterization of different mate-
rials, in this work some aspects that must be taken into account in order
to avoid problems based on satisfying the required experimental conditions
of heat flux imposed by the physical model used for data analysis and pro-
cessing will be discussed. For this purpose, for a given experimental geome-
try, the heat diffusion equation will be solved in order to obtain the sample’s
requirements for reliable measurements of c, regarding its thickness and ther-
mal conductivity. An experimental device is described that can be used for
the study of the influence of heat dissipation by convection on the method.
A computer simulation was performed for comparing the simple model with
one that takes to in account the gradient of temperature inside the sample.
The results of measurements are presented.
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5To whom correspondence should be addressed. E-mail: jcalderona@ipn.mx
6Part of this work was performed when the author was at Universidad de La Habana,
Facultad de Fı́sica, San Lázaro y L, Vedado 10400, La Habana, Cuba.

1859

0195-928X/06/1100-1859/0 © 2006 Springer Science+Business Media, Inc.



1860 Valiente, Delgado-Vasallo, Abdelarrague, Calderón, and Marin

1. INTRODUCTION

This work deals with an experimental approach currently used for the
measurement of the specific heat capacity, C, of small solid samples at
room temperature. This property is defined as a product of the specific
heat, c, and the density, ρ, and expresses the amount of heat developed
per mass unit in a sample of unit volume when its temperature is varied
by 1 K. Its knowledge is of great importance in solid-state physics because
it provides us with a direct means to test theoretical models of a given
physical system and because of its sensitivity to phase transitions, etc.

There are several methods for the experimental determination of this
parameter in solids. Some of them are discussed in detail by Touloukian
[1], while in the work of Kraftmakher [2] an overview of the most useful
calorimetric methods is given. Recently, photo acoustic methods have also
been reported for the same purpose [3,4].

The temperature relaxation method offers the advantages of an inex-
pensive and relatively simple experimental setup. It is based on first dis-
turbing an adiabatically isolated sample from its state of equilibrium by
light irradiation, and then measuring the time changes in its absolute tem-
perature, T. If the deviation of the system from the state of equilibrium
is small, the relaxation is described by the equation T (t) = T0exp(−t/τ ),
where T0 is the initial value of the temperature and τ is the relaxation
time of the system. This relaxation time, for the case of thin samples with
high thermal conductivity—as we will see later—is related to the sample’s
specific heat. This method was first proposed by Bachmann et al. [5] for
low-temperature (1–35 K) measurements; it was later extended to measure-
ments below 1 K by Schutz [6] and successfully used, with appropriate
modifications, by several authors in a higher temperature range. Djurek
and Baturic-Rubidic [7] have modified the Bachmann method for mea-
surements above 35 K. Experiments on tungsten in the range 2400–3600 K
were performed by Zinov’ev and Lebedev [8]. Hatta [9] has designed a
relaxation calorimeter, employing for the first time light heating for mea-
surements on small samples in the temperature range around room tem-
perature. Mansanares et al. [10] have later developed Hatta’s approach for
simple measurements of C at room temperature. This variant of the tem-
perature relaxation method, designed by the last mentioned authors as the
temperature rise method under continuous illumination, has been used in
recent years for a characterization of different materials such as semicon-
ductors [11], foods [12], wood [13], zeolites [14], clays [15], and ferroelectric
ceramics [16,17], among others.

In this work we will discuss some aspects related to the relaxation
method that must be taken into account in order to avoid problems based
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on satisfying the required experimental conditions of heat flux imposed by
the physical model used for data analysis and processing. For this pur-
pose, for a given experimental geometry, we will solve the heat diffusion
equation in order to obtain the sample’s requirements for reliable measure-
ments of C, regarding its thickness and thermal conductivity. The influence
of heat dissipation by convection on the method will also be analyzed. For
this purpose calculations taking into account convection heat losses were
performed, and a measurement cell was designed and constructed allowing
measurements to verify the reliability of the theoretical model. The results
of these measurements confirm our theoretical predictions.

2. EXPERIMENTAL DETAILS AND THEORY

2.1. Experimental Setup

Our typical experimental setup (Fig. 1) is a straightforward mod-
ification of the widely used arrangement described elsewhere [10–17].
The samples of thickness L were horizontally (minimizing, in this way,
convection effects due to buoyancy forces) and adiabatically supported
in a constant temperature reservoir (with the help of thin, low thermal-
conductivity isolating wires, because it is important that there is minimal
energy exchange between the sample and everything else other than the
reservoir), which has an optical glass window through which a white light
beam is uniformly focused onto the upper surface of the sample. On the
opposite side, a chromel–alumel thermocouple is attached mechanically to
the sample. A good contact is achieved by the vertical movement of the
sample using screws on which their supporting wires are firmly attached,
as shown in the Figure. The temperature evolution of the back surface
could be monitored as a function of time. A vacuum system consisting
of a mechanical oil pump and a Pirani vacuum meter is connected to the
reservoir. Before the samples are mounted on the support, they are cut to
the desired dimensions (they are typically shaped as 1 cm diameter discs or
1 cm side squares, each about 0.1 cm thick) and their surfaces are sprayed
with a thin black paint layer to assure good light absorption.

2.2. Basic Theory

The variation with time of the generated heat in the sample, due to
the absorption of light of incident power Po, is given by

∂Q

∂t
=P0 −R (1)
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Fig. 1. Schematic view of the measurement cell. 1-optical glass
window; 2-sample; 3-upper part of the (Stainless Steel) measure-
ment reservoir (consisting on two dismountable parts); 4-vacuum
o-ring; 5-lower part of the reservoir; 6-thermocouple; 7-screw
allowing the up (down) vertical movement of the sample and its
good mechanical thermal contact with the thermocouple; 8-valve
to vacuum system; 9-nylon wires forming the sample’s support.

where R represents the power lost by radiation, given by the Stefan–
Boltzmann law of radiation, which for temperature variations in the
sample �T much lower than the ambient temperature T0 is reduced to

R ≈4AεσT 3
0 �T (2)

where A is the sample’s surface area, ε is the emissivity (ε ≈ 1 if the
sample’s surfaces are black painted, as in our case), T is the sample
temperature, and σ is the Stefan–Boltzmann constant. In Eq. (1) we have
considered only heat losses by radiation.

Neglecting the temperature gradient present in the sample, it has been
obtained [10] that the rise in temperature of the back surface is given by
[10]

�T ↑ (t)= P0

AH

[
1− exp

(
− t

τ

)]
(3)
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When the illumination is interrupted, the sample’s temperature decreases
as follows:

�T↓ (t)= P0

AH
exp

(
− t

τ

)
, (4)

In the above equations

τ = LC

2H
(5)

Here, L is the sample thickness and H = 4σT 3
0 . We can determine τ by

fitting the experimental results with Eq. (3) or (4). Then, the specific heat
capacity C can be obtained from Eq. (5).

2.3. Influence of Convection

Assuming convection losses, one should introduce in the energy balance
equation, Eq. (1), a term given by Newton’s cooling law:

K =hA�T (6)

where h is a characteristic parameter that encompasses the effects of the
fluid (air in our case) that flows near the sample surface, the fluid prop-
erties, and the surface geometry. The H term in Eqs. (3) and (4) must be
replaced now by [18],[19]

H =HK =4σT 3
0 +h (7)

If we denote τk as the relaxation time measured under atmospheric pres-
sure, one can easily demonstrate from the above equations that

h=4εT 3
amb

(
τ

τK

−1
)

(8)

2.4. Consideration of Heat Conduction

In the above-described model an important approximation was made that
allows simplification of the mathematical treatment of the problem. This
approximation consisted of neglecting the temperature gradient present in
the sample due to heat conduction. If we consider it, we can obtain the
temperature field T(x,t) solving the one-dimensional heat diffusion prob-
lem with surface energy losses, i.e., the third kind boundary condition.
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Let us denote

u=u(x, t)=�T =T (x, t)−−T0 (9)

Taking into account the existence of a temperature gradient across the
sample, the temperature rise during illumination, u↑, is described by the
following set of equations:

∂u↑ (x, t)

∂t
=α

∂2u↑ (x, t)

∂x2
0<x <L t >0 (10)

u↑(x, t =0)=0 (11)

γ1u↑ (0, t)−k
∂u↑ (x, t)

∂x

∣∣∣∣
x=0

=P0 (12)

γ2u↑ (0, t)−k
∂u↑ (x, t)

∂x

∣∣∣∣
x=0

=0 (13)

When the illumination is interrupted, the system of equations becomes

∂u↓ (x, t)

∂t
=α

∂2u↓ (x, t)

∂x2
0<x <L t >0 (14)

u↓(x, t =0)=w(x) (15)

γ1u↓ (0, t)−k
∂u↓ (x, t)

∂x

∣∣∣∣
x=0

=P0 (16)

γ2u↓ (0, t)−k
∂u↓ (x, t)

∂x

∣∣∣∣
x=0

=0 (17)

where w(x) is the saturation temperature, α is the thermal diffusivity, and
k is the thermal conductivity. The later parameters are related by α=k/C.
In the above equations γ1 and γ2 are the heat exchange parameters at the
front and rear surfaces of the sample, respectively. In general, we can write

γ =γ1 =γ2 =H (18)

where H is given by Eq. (7).
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Using the well known method of separation of variables, we can propose

u↑(x, t)=w(x)+υ(x, t) (19)

and

u↓(x, t)=−υ(x, t) (20)

Substituting in Eqs. (10)–(19), one obtains

w (x)= −γ2P0x + (γ2L+k)P0

(γ2 +γ1) k +γ2γ1L
(21)

v (x, t)=
∞∑

n=1

Ane
−λna2t

[
k
√

λn

γ1
cos

(√
λnx

)
+ sin

(√
λnx

)]
(22)

where we have set α =a2. For the eigenvalues we have

λn =
(µn

L

)2
(23)

tg (µ)=
L
k

(γ1 +γ2)µ(
γ1γ2L

2

k2 −µ2
) (24)

and

An = 1
‖Xn‖

L∫
0

−w(ξ)Xn (ξ) dξ (25)

with

‖Xn‖2 =
L∫

0

[
k
√

λn

γ1
cos(

√
λnx)+ sin(

√
λnx)

]2

dx (26)

Similar results can be found in many problems related to heat propaga-
tion in materials following the absorption of laser pulses [18–20], such as
the transient heat transport by electrical carriers and phonons in semicon-
ductors [21, 22], among others.
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3. RESULTS AND DISCUSSION

3.1. Influence of Convection

Figure 2 shows open circles with typical heating and cooling curves
measured on a 500µm thick copper sample in vacuum of 4 × 10−3 Torr
and room temperature of 300 K. The results of measurements at atmo-
spheric pressure on the same sample are plotted as full circles for com-
parison purposes. As expected, a shift of the curves is obtained as a result
of the influence of the convection term. The solid curves, as above, repre-
sent the best fit to the theoretical expressions, from which a value of τ was
obtained as a mean value from those corresponding to the heating and
cooling curves. From the values of τ (at 4×10−3 Torr) and τk (measured
at atmospheric pressure), h was calculated using Eq. (8) as h= (2.30±0.50)

W·m−2·K−1. As discussed in previous studies [23, 24], the value of this
parameter can be used for a libration for the given experimental setup (a
larger value was obtained for this parameter in our previous studies, where
another measurement cell was used) allowing the determination of C by
measurements at atmospheric pressure and using Eq. (5), with H =HK for
the calculation of C.

Using this value of h, the results of similar measurements performed
in some typical materials are summarized in Table I. The very good agree-
ment between experimental and theoretical values can be observed, as well
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Fig. 2. Typical heating and cooling curves for measurements per-
formed under vacuum conditions (open circles) and without vac-
uum (solid circles) on copper samples; continuous lines show the
best fit of Eqs. (3) and (4) to the experimental data, respectively.
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Table I. Experimental Results

h C Clit

Sample τK (s) τ (s) L (µm) (W·cm−2·K−1) (J·cm−3·K−1) (J·cm−3·K−1)

Cu 95.2±0.5 130.6±0.5 500±1 (2.3±0.2)×10−5 3.20±0.5 3.45
Si 54.9±0.7 400±1 from Eq. (6) 1.68±0.1 1.65
Zn 109.8±0.1 500±1 2.69±0.1 2.77
Al 99.9±0.1 500±1 2.45±0.5 2.43

as the better results compared with previous studies [23,24], presumably
due to the improved experimental configuration.

3.2. Consideration of the Gradient of Temperature Inside the Sample:
Comparison with the Simple Model

We will begin our analysis looking for a criterion allowing neglecting
of losses by heat conduction through the sample and of the temperature
gradient. We can define

�umax =u↑(0,∞)−u↑(L,∞)=u↓(0,0)−u↓(L,0)=w(0)−w(L) (27)

as the maximum possible temperature difference between both sides of the
sample (Fig. 3).

We have obtained after a straightforward calculation the difference
between the temperature extreme values:

�umax = γ2P0L

k(γ2 +γ1)+γ2γ1L
(28)

for γ =γ1 =γ2

�umax = P0

2
1

k
L

+ γ
2

(29)

and its ratio:

w (0)

w (L)
=1+γ2

L

k
=

k
L

+γ

k
L

(30)

Then, on the basis of Eqs. (29) and (30), the gradient of temperature
inside the sample may be neglected when the following criterion is fulfilled:

k/L�γ (31)
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Fig. 3. Graphs of (a) u↑(x, t) and (b) u↓(x, t).

Substituting γ =H , one obtains

k/L�H (32)

or

k/V �H/A, (33)

where V =AL is the sample volume.
Taking into account the definition of thermal resistance,

Rt =L/(Ak) (34)
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we obtain

Rt �1/(HA) (35)

The obtained results corroborate that the temperature gradient can be
neglected for all materials for which the condition in Eq. (34) is satisfied,
i.e., when the thermal resistance of the sample is much less than its resis-
tance to convective and radiation effects, as expressed by the right-hand
side of that condition.

A graphic simulation of the temperature behavior in the backside of
the sample for the models presented above is shown in Fig. 4. A compar-
ison between the results of a typical simple, phenomenological model of
Sections 2.2 and 2.3 and the analytical model considering the temperature
gradient described in Section 2.4 is presented. For simplicity we have set
h=0.

Figure 3a shows the results obtained for a 50µm thick typical
high conductivity sample such as copper, Cu (thermal conductivity k =
400 W·m−1· K−1, C =3.45 J·cm−3·K−1). The results for a low conductivity
sample (wood, k=0.04 W·m−1·K−1, C =1.35 J·cm−3·K−1) are presented in
Fig. 4b and c for thicknesses of 500 and 2000 µm, respectively. As one can
see, the curves resulting from both models overlap. There is only a small
difference for the thicker sample of Fig. 4c.

On the basis of the computer simulations, we conclude that although
the temperature gradient forming across the sample as a result of heating
can play an important role in the model for high values of L/k, the phe-
nomenological model described in Section 2 can be used with confidence
for common materials and for thicknesses satisfying the one-dimensional
approach.

It should be noted that the results given by Eq. (34) are similar to those
obtained by Bachman et al. [5]. In the mentioned work the authors state
that the temperature gradient can be neglected when the relaxation time
τ =LC/2H is greater than the internal relaxation time τi =L2 C/k. This is
analogous to comparing 1/H with L/k, as in Eq. (31), or Rt with 1/HA, as
done above. As the parameter H is not related to the sample dimensions or
thermal properties, then the sufficient condition (τ � τi), for the same H,
will be met for very thin samples with high thermal conductivity.

4. CONCLUSIONS

Convection losses and the temperature gradient inside a sample were
taken into account and their influence on the results of the tempera-
ture relaxation method has been discussed. An experimental device was
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Fig. 4. Normalized temperature relaxation curves predicted
by both the simple (dashed curve) and analytical (solid curve)
models: (a) 50 µm thick high thermal-conductivity sample,
(b) 500 µm thick low thermal-conductivity sample, and (c)
2000µm thick low thermal-conductivity sample.
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designed that can be used for the study of the influence of convection on
the experimental results. It is shown that the heat transfer coefficient, char-
acteristic for this phenomenon, can be used to determine the specific heat
capacity of solids by measurements performed at atmospheric pressure.
Furthermore, a simulation of the temperature evolution was made, com-
paring the phenomenological model (commonly used in this technique)
with a more rigorous one, which takes into account the temperature gra-
dient created in the sample. The obtained results corroborate that the
approximation is possible for all materials for which the condition, Rt �
1/HA, is satisfied, i.e., the phenomenological model described above can
be used without problems for common materials and for typical thickness-
es for which the one-dimensional approach is valid.
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